The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFF(HBN) development.
نویسندگان
چکیده
We present a new reactive force field ReaxFF(HBN) derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFF(HBN) has been tested against quantum calculation data for B-H, B-B, and B-N bond dissociations and for H-B-H, B-N-B, and N-B-N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFF(HBN) for B-N-H systems is also tested for (i) H-B and H-B bond energies as a function of out of plane in H-B(NH2)3 and H-N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFF(HBN) gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFF(HBN) is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms.
منابع مشابه
A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملSeparation-Based Adsorption of H2 from Binary Mixtures inside Single, Double, Triple Walled Boron-Nitride Nanotubes: A Grand- Canonical Monte-Carlo Study
This study investigates the separation based on adsorption of the binary gas mixture of hydrogen withbiogas (gases: CO2, CH4, O2, N2) and inert gases (gases: He, Ne, and Ar) using single-walled ((7,7), (15,15),(29,29), (44,44), (58,58) and (73,73) SWBNNTs), double-walled ((11,11)@(15,15), (7,7)@(22,22) DWBNNTs)and triple walled ((8,8)@(11,11)@(15,15) and (7,7)@(15,15)@(22,22) ...
متن کاملTheoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes
In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...
متن کاملTheoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes
In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 123 11 شماره
صفحات -
تاریخ انتشار 2005